Neutral ceramidase‐enriched exosomes prevent palmitic acid‐induced insulin resistance in H4IIEC3 hepatocytes
نویسندگان
چکیده
Oversupply of free fatty acids such as palmitic acid (PA) from the portal vein may cause liver insulin resistance. Production of reactive oxygen species plays a pivotal role in PA-induced insulin resistance in H4IIEC3 hepatocytes. Recently, we found that exosomes secreted from INS-1 cells that were transfected with neutral ceramidase (NCDase) plasmids had raised NCDase activity; these NCDase-enriched exosomes could inhibit PA-induced INS-1 cell apoptosis. Here, we showed that PA reduced insulin-stimulated tyrosine phosphorylation of insulin receptor substrate 2 and decreased insulin-stimulated uptake of the fluorescent glucose analog 2-NBDG, confirming that insulin resistance occurred in PA-treated H4IIEC3 cells. Moreover, NCDase-enriched exosomes from INS-1 cells rescued PA-induced H4IIEC3 insulin resistance and blocked PA-induced reactive oxygen species production in which ceramide was involved.
منابع مشابه
Palmitate Induces Insulin Resistance in H4IIEC3 Hepatocytes through Reactive Oxygen Species Produced by Mitochondria*S⃞
Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high fat diet are complex and may be accompanied by alterations not restricted to the liver, it is difficult to determine the contribution...
متن کاملPalmitate Induces Insulin Resistance in H4IIEC3 Hepatocytes through Reactive Oxygen Species Produced by Mitochondria
Running Title: Palmitate-induced hepatic insulin resistance Visceral adiposity in obesity causes excessive free fatty acid (FFA) flux into the liver via the portal vein and may cause fatty liver disease and hepatic insulin resistance. However, because animal models of insulin resistance induced by lipid infusion or a high-fat diet are complex and may be accompanied by alterations not restricted...
متن کاملStinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner.
OBJECTIVE Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. RESEARCH DESIGN We investigated the ...
متن کاملSaturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates.
JNKs are attractive targets for treatment of obesity and type-2 diabetes. A sustained increase in JNK activity was observed in dietary and genetic models of obesity in mice, whereas JNK deficiency prevented obesity-induced insulin resistance. A similar insulin-sensitizing effect was seen upon treatment of obese mice with JNK inhibitors. We now demonstrate that treatment with the saturated fatty...
متن کاملPalmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents.
Insulin signaling can be modulated by several isoforms of PKC in peripheral tissues. Here, we assessed whether one specific isoform, PKC-theta, was expressed in critical CNS regions that regulate energy balance and whether it mediated the deleterious effects of diets high in fat, specifically palmitic acid, on hypothalamic insulin activity in rats and mice. Using a combination of in situ hybrid...
متن کامل